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Abstract—. Our simple classification technique on this 
approach is also able to remove the unwanted data sets that 
are not useful for making the decision system. We can also 
combined the fuzzy techniques, TRApriori Algorithm and 
classification technique to provide the close output. Our 
classification based fuzzy mining association algorithm can 
also work on low support values. Due to online notes (Video 
based and Web based) for education also plays an important 
role for enhancement of their result. Students of this 
generation are smart due to internet. Also the cost of internet 
goes down , a low  income family student can also used web 
based learning.Video from NPTEL can also be downloaded 
from you tube free of cost. Once downloaded the video is 
distributed amongst the students. 
 
Keywords—TRApriori, Classified data sets, fuzzy approach, 
quantitative data 
 

I.INTRODUCTION 
In data mining technique, association rules plays an 
important role in knowledge discovery technique. Data 
mining is a technique digging out the essential thing and 
leaving unimportant item. Similarly if there is a huge 
amount of data or quantitatively data then we need a 
suitable algorithm or technique to remove or hide 
unimportant data. If someone is suffering from any diseases 
then he/she will ensure from many different ways of health 
checkup, it means it will check its diseases from two or 
more doctor or two or more blood testing. Similarly I am 
using fuzzy logic, classification technique, TRApriori 
mining algorithm to get the close output. Here our 
classification based fuzzy mining algorithm help in reduced 
time complexity in later steps of this algorithm. So we can 
remove the quantitavely data that are not important for 
making knowledge discovery.  Our classification based 
fuzzy mining association algorithm can also work on low 
support values. 
The remaining parts of this paper are organized as follows. 
Related research is reviewed in Section 2. The proposed 
fuzzy TRApriori data-mining algorithm is described in 
Section 3. An example is given to illustrate the proposed 
algorithm in Section 4. Experiments to demonstrate the 
performance of the proposed data-mining  algorithm are 
stated in Section 5. Conclusions and future work are finally 
given in Section 6. 
Fuzzy logic are used for intelligent system like human 
similarity[25]. Several fuzzy system are used for the set of 
data with some domain [14,16-17,18,20,22-24,29]. Fuzzy 

approach with data mining approach has been used in 
[15,25,29] 
 

II.  RELATED WORK 
As we know , the aim of data mining is to apply some kind 
of association rule on data sets. Getting this agrawal and his 
co-worker proposed some mining algorithm based on the 
large data sets to find association rule[1-10]. These break  
the mining steps into two phases. In the first phase candidate 
of itemsets are obtained and counted by scanning the 
transactions. The number of itemset must support the 
minimum pre-defined threshold value called minimum 
support. Then later we make the pair of item sets and apply 
the association rule for getting the required output. 
Srikant and agrawal also proposed mine association rule that 
are partitioned based[27].The fuzzy set was first introduced 
by zadah in 1965 [29]. Fuzzy set is used to define the exact 
answer of data set when human being is unable to provide 
answer. Hong et al, proposed a fuzzy mining algorithm to 
mine fuzzy rules from quantitative data[22]. They required 
each quantitative data into a fuzzy set and fuzzy steps to 
find fuzzy rule. Cai at al proposed weighted mining rule of 
data sets[15]. Yue et al, then extended the fuzzy concept 
based an vectors[28]. 
 

III. THE PROPOSED FUZZY DATA-MINING CLASSIFIED 

BASED ALGORITHM 
I read all the references[1-29] for  classification based 
techniques. They have used the fuzzy based mining 
techniques using TRApriori algorithm.  I added the extra 
classified techniques. This technique will not require to 
fuzzifies every itemsets. On later steps of mining algorithm. 
This will reduces some complexity to theprior work. The 
TRApriori algorithm also works on low support and low 
confidence. Our proposed methodology is based on two 
part. First part mostly deal with classification based 
TRApriori algorithm set. Then later we will also apply the 
Apriri algorithm dor important fuzzy values for finding the 
association rule. 

IV. AN EXAMPLE 
In this section, an example is given to illustrate the proposed 
Classification based TRA data-mining algorithm by fuzzy 
techniques. This is a simple example to our proposed model 
where I am taking the percentage of under graduate 
(Polytechnic) , graduate (Bachelor of Engineering)and post 
graduate (Master of technology) marks for their first and 
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final year of each course.. The data set includes 12 
transactions, as shown in Table 1.I  have taken the first 12  
passed student from the course result. 

Table 1. The set of students’ course scores 
 

The data sets include 12 transaction with having three 
courses i. e undergraduate (Polytechnic) , Graduate (B.E) , 
Post Graduate (M.Tech) . Each course contain data sets of 
first year and final year grade marks. Each denotes as 
polytechnic first year (PPY) , Polytechnic final year (PFiY).  
B.E First Year (BFY), B.E Final Year (BFiY) , M.Tech 
First Year (MFY), Mtech Final Year (MFiY). The fuzzy 
membership function of above courses are shown in fig 1. 

 
Fig. 1 Triangular Membership Function 

 
In this, we have used triangular membership function 
because of its suppleness and computational efficiency. We 
can also derived its value from automatic adjustment [12]. 
We can also use Gaussian membership function.. 
We can categories it’s as Low , Middle and high. Thus we 
have used three fuzzy membership values are produced for 
each attributes. According to the predefined membership 
functions for this transaction data in table 1, the proposed 
classified based fuzzy TRApriori data mining algorithm 
proceed as follows. 
Step 1:Transform the actual values of each attribute into 
fuzzy sets. Take PFY marks in case 1 as an example. The 
marks 60 is replaced by a fuzzy set (.6/low + 0.0/middle + 
0.0 / high) Using the given membership functions. This step 
is repeated for all the data sets. At last the result obtained is 
as follow:- 
 

Table 2: The fuzzy set transformation Table. 
 

Step 2:  Create a Classification of fuzzy values.The fuzzy 
values falls under the range of 0.01 to 0.10 is belong to 
category of ‘a’ item set. Similarly the fuzzy values fall 
under the range of 11 to .20 is belong to category of b item 
sets and so on upto item set ‘j’. These are is depicted on  
table 3 . 

Table 3. The fuzzy classification  table 
 

Step: 3 Take the proposed  Database 
Provide the proposed data set to its classified based value. 
for an example, it is shown below in table 4 
S.N TName Items 

1 PFY(L) f, h, a, a, b, h, g, b, c 
2 PFY(M) b, a, a, i, c, b 
3 PFY(H) nil 
4 PFiY(L) c, a, c, c, c, b, c 
5 PFiY(M) c, b, a, c, i, i, c, g, c, c, c 
6 PFiY(H) a 
7 BFY(L) a, c, c, a 
8 BFY(M) a, a, c, j, i, c, a, i, f, i 
9 BFY(H) nil 
10 BFiY(L) a 
11 BFiY(M) i, b, i, b, a, i, a, b, i, c, b 
12 BFiY(H) c, a, a, c, c, b 
13 MFY(L) c, b 
14 MFY(M) b, b, g, g, j, h, g, b, i, j, g 
15 MFY(H) a 
16 MFiY(L) nil 
17 MFiY(M) i, h, g, a, c, b, a, c, b, c, g 
18 MFiY(H) a, c, b, a, c, b, c 

Table 4. Classification values of data sets 

S.N 
Polytechnic 

Engineering 
Graduate 

Engineering Post 
Graduate 

PFY PFiY BFY BFiY MFY MFiY 
1 60 65 68 76 66 75 
2 61 68 78 67 67 77 
3 58 67 62 76 70 70 
4 67 65 64 80 80 88 
5 62 76 74 83 78 85 
6 63 72 73 81 74 87 
7 72 65 66 75 77 88 
8 57 70 61 88 78 85 
9 59 80 62 86 82 90 
10 61 64 73 72 76 82 
11 66 66 70 85 74 85 
12 64 64 73 83 71 78 

SN 1 2 3 4 5 6 7 8 9 10 11 12 
P     L 
F    M 
Y    H 

.6 .0 .8 .1 .1 .2 .0 .8 .7 .0 .2 .3 

.0 .0 .2 .1 .1 .9 .0 .0 .0 .0 .3 .2 

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
P     L 
Fi   M 
Y    H 

.3 .0 .1 .3 .0 .0 .3 .0 .0 .3 .2 .3 

.3 .0 .2 .3 .9 .9 .3 .7 .0 .3 .3 .3 

.0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 
B    L 
F    M 
Y    H 

.0 .0 .1 .3 .0 .0 .3 .0 .1 .0 .0 .0 

.0 .6 .1 .3 1 .9 .3 .0 .1 .9 .6 .9 

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
B    L 
Fi   M 
Y    H 

.0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

.9 .2 .9 .0 .2 .1 .9 .1 .2 .9 .3 .2 

.0 .0 .0 .0 .3 .1 .0 .1 .3 .0 .3 .0 
M  L 
F    M 
Y    H 

.3 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

.2 .2 .7 .0 .7 1 .8 .7 .2 .9 1 .7 

.0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 
M  L 
Fi   M 
Y    H 

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

.9 .8 .7 .1 .3 .2 .1 .3 .0 .2 .3 .7 

.0 .0 .0 .1 .3 .2 .1 .3 .0 .2 .3 .0 

S.N Item Range 
1 a 0.01-0.10 
2 b 0.11-.20 
3 c 0.21-0.30 
4 d 0.31-0.40 
5 e 0.41-0.50 
6 f 0.51-0.60 
7 g 0.61-0.70 
8 h 0.71-0.80 
9 i 0.81-0.90 
10 j 0.91-1 

1  Low           Middle       High 

   
Membership 
Value 

Marks

           56 60 69 74    77   89    91100 
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Step:4  Find out the large itemset L1 
L1 

S.N Itemset Frequency 
1 a 21 
2 b 19 
3 c 28 
4 g 8 
5 i 12 

Table 5. L1 Item sets 
 

Step 5: Now we will define the minimum support as .4 and 
the minimum confidence threshold as .5. 
 
Step 6: find out the candidate itemset C1. 
 
Find the C1 according to their classified based value on the 
data set in Table 6.. 
 

C1 

S.N TName Items 

1 PFY(L) {a},{ a}, {b} ,{ b}, {c}, {g}, 

2 PFY(M) {a},{ a}, {b} ,{ b}, {c}, {i} 

3 PFiY(L) {a}, {b} ,{ c}, {c}, {c}, {c}, {c} 

4 PFiY(M) 
{a},{ b}, {c} ,{ c}, {c}, {c}, {c}, 

{c},{g}.{i},{i} 

5 PFiY(H) {a} 

6 BFY(L) {a},{ a}, {c} ,{ c} 

7 BFY(M) {a},{ a}, {c} ,{ c},{i},{i},{i} 

8 BFiY(M) {a} 

9 BFiY(M) 
{a},{ a}, {b} ,{ b}, {b}, {b}, {c}, 

{i},{i},{i},{i} 

10 BFiY(H) {a},{ a}, {c} ,{ c}, {c}, {b} 

11 MFY(L) {b},{ c} 

12 MFY(M) {b},{ b}, {b} ,{ g}, {g}, {g}, {i} 

13 MFY(H) {a} 

14 MFiY(M) 
{a},{ a}, {b},{ b}, {c} , {c}, {c}, 

{g},{i} 

15 MFiY(H) {a},{ a}, {b},{ b}, {c} , {c}, {c} 

Table 6.C1 Item sets 
 
Step:7 Find the large itemset L2 

L2 

SN Itemset Frequency 

1 {a,b} 13 

2 {b,c} 11 

3 {a,c} 14 

4 {a, i} 7 

5 {b,g} 7 

6 {b,i} 8 

7 {c,i} 7 

8 {c,g} 4 

Table 7 .L2 Item sets 
Step:8 Find the candidate itemset C2. 
 

Table 8 .C2 Item sets 
 
Step:9  Find The Large Itemset L3  

Table 9 .L3  Item sets 

 
Step:10 Find the candidate itemset    C3   in Table 10. 

Table 10 .C3 Item sets 
 
Step:11 Find  The Large Itemset L4 in Table 11 

L4 
SN Itemset Frequency 
1 {a, b , c, i} 4 

Table 11 .L4 Item sets 
STEP:12   Create  the Actual fuzzy value table according to 
C3 candidate itemsets. This datasets are important datasets 
where we are able to make any fruitful decision. 
Take only those data sets that are present or found in 
generating C3  candidate itemsets and ignore the remaining 
datasets. This datasets are important dataset where we are 
able to make any fruitful decision. Now this is our actual 
table where we will get the exact output.  
S.N PFY(M) PFiY(M) BFiY(M) MFiY(M) 

1 .0 .3 .9 .9 
2 .0 .0 .2 .8 
3 .0 .2 .9 .7 
4 .2 .3 .0 .1 
5 .1 .9 .2 .3 
6 .1 .9 .1 .2 
7 .9 .3 .9 .1 
8 .0 .7 .1 .3 
9 .0 .0 .2 .0 
10 .0 .3 .9 .2 
11 .3 .3 .3 .3 
12 .2 .3 .2 .7 

Table 12 . useful Item sets 

C2 
S.N TName Items 

1 PFY(L) {a},{ a}, {b} ,{ b}, {c}, {g} 
2 PFY(M) {a},{ a}, {b} ,{ b}, {c}, {i} 
3 PFiY(L) {a}, {b} ,{ c}, {c}, {c}, {c}, {c} 

4 PFiY(M) 
{a},{ b}, {c} ,{ c}, {c}, {c}, {c}, 

{c},{g}.{i},{i} 
5 BFY(M) {a},{ a}, {c} ,{ c},{i},{i},{i} 

6 BFiY(M) 
{a},{ a}, {b} ,{ b}, {b}, {b}, {c}, 

{i},{i},{i},{i} 
7 BFiY(H) {a},{ a}, {c} ,{ c}, {c}, {b} 
8 MFY(M) {b},{ b}, {b} ,{ g}, {g}, {g}, {i} 
9 MFiY(M) {a},{ a}, {b},{ b}, {c} , {c}, {c}, {g},{i} 
10 MFiY(H) {a},{ a}, {b},{ b}, {c} , {c}, {c} 

L3 
SN Itemset Frequency 
1 {a, b, c} 10 
2 {a , c, i } 6 

C3 
S.N Tname Items 

1 PFY(M) {a},{ a}, {b} ,{ b}, {c}, {i} 

2 PFiY(M) 
{a},{ b}, {c} ,{ c}, {c}, {c}, {c}, 

{c},{g}.{i},{i} 
3 BFiY(M) {a},{ a}, {c} ,{ c}, {c}, {b} 

4 MFiY(M) 
{a},{ a}, {b},{ b}, {c} , {c}, {c}, 

{g},{i} 
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Step 13: Find the candidate itemset  C1 fromactual fuzzy 
set.  
Take the linguistic value PFY(M) as above example, the 
scalar cardinality is (.2 + .1 +. 1 + .9 +. 3 + .2) = 1.8.The  C1  
candidate itemset for this example is shown as follows:  
{(PF1Y(M),4.5), (BFiY(M),5.0), (MFiY(M),,4.6)} 
S.N PFY(M) PFiY(M) BFiY(M) MFiY(M) 

1 .0 .3 .9 .9 
2 .0 .0 .2 .8 
3 .0 .2 .9 .7 
4 .2 .3 .0 .1 
5 .1 .9 .2 .3 
6 .1 .9 .1 .2 
7 .9 .3 .9 .1 
8 .0 .7 .1 .3 
9 .0 .0 .2 .0 
10 .0 .3 .9 .2 
11 .3 .3 .3 .3 
12 .2 .3 .2 .7 
 1.8 4.5 5.0 4.6 

Table 13 . C1 Value 
 
Step 14: Find the L1   large itemset.   
The    large itemset rides on the count value, which is 
greater than the minimum support value.In this exemplary 
dataset, L2   can be denoting as follows:  
 {(PFiY(M),(MFiY(M),2.30),(BFiY(M),(MFiY(M),3.00 ) } 
 
Step:15 Find the candidate itemset C2 from l1 we will take 
the lesser membership value when we compare the two 
itemsets 
 

S.N PFiY(M) BFiY(M) 
PFiY(M), 
MFiY(M) 

1 .3 .9 .3 
2 .0 .2 .0 
3 .2 .9 .2 
4 .3 .0 .0 
5 .9 .2 .2 
6 .9 .1 .1 
7 .3 .9 .3 
8 .7 .1 .1 
9 .0 .2 .0 
10 .3 .9 .3 
11 .3 .3 .3 
12 .3 .2 .2 

Table 14: C2 values 
 
Step:16 find the L2  Large itemset 
The linguistic value (PFiY(M), MFiY(M)) has the scalar 
cardinality of  .3+.2+.2+.1+.3 +.1+.3+.1 +3+ .3+2=2.00. 
The Large itemset L2 shown as 
 

 
The l2 large item set rides on the count value, which is 
greater than the minimum support. 
{ (PFiY(M),(BFiY(M)),(PFiY(M),MFiY(M),2.30) 
(BFiY(M),MFiY(M) 3.00)} 

STEP:17 Find the C3 candidate itemset 
 

S.N PFY(M) BFiY(M) MFiY(M) 
PFiY(M),BFiY(M) 

MFiY(M) 
1 .0 .9 .9 .3 
2 .0 .2 .8 .0 
3 .0 .9 .7 .2 
4 .2 .0 .1 .0 
5 .1 .2 .3 .2 
6 .1 .1 .2 .1 
7 .9 .9 .1 .1 
8 .0 .1 .3 .1 
9 .0 .2 .0 .0 
10 .0 .9 .2 .2 
11 .3 .3 .3 .3 
12 .2 .2 .7 .2 
 
Step 18.Construct the association rules for  all the largeset 
.there are three possible association rules. 
If BFiY = middle, then MFiY = Middle; 
If PFiY = Middle, then MFiY = Middle; 
(b)We can also find the confidence of all the rule. Suppose 
our minimum threshold is .50 for confidence. Its 
confidence value is calculated as: 
The confidence values of the other two rule are shown 
below. 
“If BFiY = Middle, then MFiY = Middle” has a confidence 
value of 0.60; 
“If PFiY = Middle, then MFiY = Middle” has a confidence 
value of 0.51; 
The final resulting rules are thus obtained:   
“If BFiY = Middle, then MFiY = Middle” has a confidence 
value of 0.60; 
“If PFiY = Middle, then MFiY = Middle” has a confidence 
value of 0.51; 
 

V. CONCLUSION 
We can reduce the time complexity of large data set by 
using fuzzy data mining TRApriori classified based 
algorithm. 
We can remove our quantitatively data set in to the 
qualitatively data set that are used to perform association of 
itemset. 
Our classification based TRApriori fuzzy based mining 
association algorithm will also work on low support value 
and provide the fruitful result. 
Our simple classification technique on this approach is also 
able to remove the unwanted data sets that are not useful for 
making the decision system. 
 We can also combine the fuzzy techniques, TRApriori 
Algorithm and classification technique to provide the close 
output. 
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